

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of science; Bachelor of science in Applied Mathematics and Statistics			
QUALIFICATION CODE: 07BSAM; 07BOSC LEVEL: 5			
COURSE CODE: MASSO1S	COURSE NAME: MATHEMATICAL STRUCTURES		
SESSION: JUNE 2022	PAPER: THEORY		
DURATION: 3 HOURS	MARKS: 100		

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER	Mr B.E OBABUEKI	
MODERATOR:	Prof S.A REJU	

INSTRUCTIONS				
1.	Answer ALL the questions in the booklet provided.			
2.	Show clearly all the steps used in the calculations where necessary.			
3.	3. All written work must be done in blue or black ink and sketches mu			
	be done in pencil.			

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (excluding this front page)

Question 1 (15 marks)

- 1.1 Subtract the number $7F.ABCDEF_{16}$ from the number $FD.3256_{16}$. (4)
- 1.2 Convert the number 245.3₆ to base 7 correct to 2 places after the point. (7)
- 1.3 Use the grouping of digits to convert $30F.4E2_{16}$ to octal. (4)

Question 2 (28 marks)

- 2.1 Let $\Omega = \{1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e\}$ be a universal set and let $A = \{1, 3, 5, 7, 9, b, d\}$, $B = \{2, 4, 6, 7, 9, a, b, c\}$ and $C = \{2, 5, 7, 9, a, b\}$ be subsets of Ω .
- 2.1.1 Draw a Venn diagram to represent this information. (7)
- 2.1.2 Write down the power set $P(A \cap B \cap C)$. (4)
- 2.2 Among the 133 students at school, 44 take Geography, 48 take Biology, 32 take Mathematics, 8 take both Geography and Biology, 9 take Geography and Mathematics, 7 take Biology and Mathematics. 30 students take none of the three subjects.
- 2.2.1 Draw a Venn diagram to represent this information. (5)
- 2.2.2 Use the formula

$$n(G \cup B \cup M) = n(G) + n(B) + n(M) - n(G \cap B) - n(G \cap M) - n(B \cap M) + n(G \cap B \cap M)$$

to determine $n(G \cap B \cap M)$. (3)

- 2.2.3 How many students take Geography or Biology? (2)
- 2.2.4 How many students take Biology and Mathematics but not Geography? (1)
- 2.3 Given that A and B are subsets of the same universal set, prove that $(A' \cup B)' \subseteq A \cap B'$. (6)

Question 3 (10 marks)

- 3.1 Consider the following statements
 - p: Peter went to school
 - q: Queen ate an apple
 - r: Russel missed his soccer practice
 - a: Agnes cried.

Write the statement *If Peter did not go to school and Queen ate an apple, then either**Russel missed his soccer practice or Agnes did not cry in symbolic logic. (5)

3.2 Use a truth table to determine whether the two statements $(A' \vee B)'$ and $A \wedge B'$ are contradictions, a tautology, equivalent or none of these. (5)

Question 4 (17 marks)

- 4.1 Write a pseudocode that reads the names, gender and ages of 1000 persons and outputs the average age of the males. (10)
- 4.2 Draw a flow chart that solves the linear equation ax + b = c and outputs the result. Your program must test whether a = 0. (7)

Question 5 (15 marks)

- 5.1 Draw the logic circuit for the Boolean expression $E(X,Y,Z) = \overline{\overline{XY}Z + \overline{X}YZ + \overline{\overline{X}Y}}$.
- 5.2 Express $\overline{A+B} + \overline{AB}C + \overline{A+BC} + \overline{B}$ in a sum of products form. (5)
- 5.3 Copy the table below and use the following logic circuit to complete it: (4)

Α	В	С	Е
0	1	0	
1	0	1	
1	1	0	
0	0	1	

Question 6 (15 marks)

- Use mathematical induction to prove that the sum of the first n odd natural numbers is n^2 . (7)
- 6.2 Prove that the product of two odd numbers is odd. (8)

END OF PAPER. Total Marks 100